HW04 - Electromagnetic Radiation

① This is a preview of the published version of the quiz

Started: Sep 18 at 12:47pm

Quiz Instructions

Homework 04 - Electromagnetic Radiation

Question 1	1 pts
What is the frequency of light with a wavelength of 4.0×10^{-7} m?	
O 7.5 x 10 ¹⁴ s ⁻¹	
○ 1.3 x 10 ⁻¹⁵ s ⁻¹	
○ 3.0 x 10 ⁻¹⁴ s ⁻¹	
\bigcirc 3.0 x 10 ¹⁴ s ⁻¹	

Question 2	1 pts
What is the correct order of increasing frequency?	
infrared radiation, radio waves, visible light, ultraviolet radiation	
radio waves, visible light, ultraviolet radiation, infrared radiation	
radio waves, infrared radiation, ultraviolet radiation, visible light	
Ultraviolet radiation, visible light, infrared radiation, radio waves	
radio waves, infrared radiation, visible light, ultraviolet radiation	

Question 3	1 pts
Light with a frequency of 7.30×10^{14} Hz lies in the violet region of What is the wavelength of this frequency of light?	the visible spectrum.
○ 4.11 x 10 ²¹ nm	
○ 4.11 x 10 ⁻⁷ nm	
○ 4.11 x 10 ⁻¹⁶ nm	
O 411 nm	
Question 4	1 pts
When an electron beam strikes a block of copper, x-rays of freque emitted. What is the wavelength of these x-rays? 1.52 x 10 ⁻¹¹ nm	elicy 1.97 x 10 Tiz ale
○ 1.52 x 10 ⁻² pm	
O 15.2 pm	
O 15.2 nm	
Question 5	1 pts
Wavelength is	
one-half of the height of a wave.	
the distance between a peak of one wave and the trough of the next.	

the number of waves passing a fixed point in one second.	
Question 6	S
Frequency is	
the number of waves passing a fixed point in one second.	
one half the height of the wave.	
the distance between a peak in one wave to the trough in the next wave.	
the distance between successive peaks in a wave.	
Question 7	:S
It takes light with a wavelength of 212 nm to break the N–H bond in ammonia. What energy is required per photon to break this bond? What is the N–H bond strength in terms of kJ per mole?	
energy is required per photon to break this bond? What is the N-H bond strength in	
energy is required per photon to break this bond? What is the N–H bond strength in terms of kJ per mole?	
energy is required per photon to break this bond? What is the N–H bond strength in terms of kJ per mole? © 6.6 x 10 ⁻²² kJ/photon; 0.398 kJ/mol	
energy is required per photon to break this bond? What is the N–H bond strength in terms of kJ per mole? © 6.6 x 10 ⁻²² kJ/photon; 0.398 kJ/mol © 6.6 x 10 ⁻²² kJ/photon; 398 kJ/mol	

2 pts

the distance between successive peaks in a wave.

Question 8

corresponding wavelength of 1850 nm. How mar lamp generate in 1 sec?	y photons of infrared radiation does the
○ 1.02 x 10 ²⁰ photons	
O 6.63 x 10 ²³ photons	
1.04 x 10 ²⁹ photons	
○ 1.10 x 10 ⁻¹⁹ photons	
Question 9	1 pts
A photon has a frequency of 223 MHz. What is th	e energy of this photon?
○ 1.48 x 10 ⁻²⁵ J	
○ 1.48 x 10 ⁻³¹ J	
○ 8.91 x 10 ⁻²² J	
○ 8.91 x 10 ⁻²⁸ J	
Question 10	2 pts
Carbon emits photons at 745 nm when exposed energy would be obtained if 44g of carbon were itemits one photon.	•
○ 9.1 x 10 ⁵ J	
○ 7.1 x 10 ⁶ J	

○ 5.9 x 10 ⁵ J		
○ 2.7 x 10 ⁻¹⁹ J		

Question 11	2 pts
A 200 nm photon has times the energy of a 700 nm photon.	
O 4.2	
O 0.29	
○ 3.5	
O 0.37	

Question 12	2 pts
If a photon's wavelength is 663 μm, what is its energy?	
○ 4.40 x 10 ⁻⁴⁶ J	
○ 3.00 x 10 ⁻²² J	
○ 3.00 x 10 ⁻²⁵ J	
○ 4.40 x 10 ⁻⁴³ J	

Question 13 2 pts

Sodium vapor lamps, used for public lighting, emit yellow light of a wavelength of 570 nm. How much energy is emitted by an excited sodium atom when it generates a photon?

Question 14	2 pts
○ 3.5 x 10 ⁻²⁸ J	
○ 2.8 x 10 ⁻¹⁹ J	
2.8 x 10 ⁻²⁰ J	
○ 3.5 x 10 ⁻¹⁹ J	

Consider the sodium vapor lamps described in question 13. How much energy is emitted by 45.8 mg of sodium atoms emitting light at this wavelength? Assume each sodium atom emits one photon.

2.0 x 10⁻³ J

2.0 x 10²¹ J

4.2 x 10⁵ J

420 J

Question 15	2 pts
A particular metal has a work function of 1.05 eV. A light is shined onto this metal value a corresponding wavelength of 324 nm. What is the maximum velocity of the photoelectrons produced? (Hint: $1 \text{ eV} = 1.6022 \times 10^{-19} \text{ J}$, mass of an electron = 9.1 kg)	
No photoelectrons are produced.	
○ 1.35 x 10 ¹² m/s	
○ 9.89 x 10 ⁵ m/s	
0	

Question 16	2 pts
A particular metal has a work function of 3.05 eV. A light is shined onto this metal with a corresponding wavelength of 524 nm. What is the maximum velocity of the photoelectrons produced? (Hint: $1 \text{ eV} = 1.6022 \times 10^{-19} \text{ J}$, mass of an electron = 9.11 x 31 kg)	
No photoelectrons are produced.	
○ 8.72 x 10 ⁸ m/s	
○ 9.12 x 10 ⁵ m/s	
○ 8.32 x 10 ¹¹ m/s	

Question 17	2 pts
Max Planck's theory averted the so called "UV Catastrophe" of classical mechanics Which of the following best describes <i>how</i> Planck's theory avoided the "UV Catastrophe"?	3.
 Radiation emitted by blackbody radiators will reach UV energy levels only at extremely high temperatures. 	h
 Eventually, blackbody radiators can cool to a temperature of absolute zero, resulting in its inability to release any more UV radiation. 	
 Radiation given off by blackbody radiators can be emitted in all types of radiation, not just tradiation. 	JV
Radiation given off by blackbody radiators can only be emitted in quantized amounts.	

Question 18	ots
The de Broglie equation was important for a number of reasons, not least of which was that it demonstrated that	i
 all objects have a wavelength. However, in the case of macroscopic objects, these wavelengths are so small that they can be ignored. 	S
only quantum objects have wavelengths.	
 all objects have a wavelength. However, in the case of quantum objects, these wavelengths are so small that they can be ignored. 	9
only macroscopic objects have wavelengths.	
Question 19	ots
An atom of which element, moving at 240 m/s, would possess a de Broglie wavelength 1.40×10^{-11} m?	of
○ Mn	
O At	
○ Sn	
○ Cs	

Quiz saved at 12:47pm

Submit Quiz