HW04 - Electromagnetic Radiation

(!) This is a preview of the published version of the quiz

Started: Sep 18 at 12:47pm

Quiz Instructions

Homework 04 - Electromagnetic Radiation

Question 1

What is the frequency of light with a wavelength of $4.0 \times 10^{-7} \mathrm{~m} ?$
$7.5 \times 10^{14} \mathrm{~s}^{-1}$
$1.3 \times 10^{-15} \mathrm{~s}^{-1}$
$3.0 \times 10^{-14} \mathrm{~s}^{-1}$
$3.0 \times 10^{14} \mathrm{~s}^{-1}$

Question 2

What is the correct order of increasing frequency?
infrared radiation, radio waves, visible light, ultraviolet radiationradio waves, visible light, ultraviolet radiation, infrared radiationradio waves, infrared radiation, ultraviolet radiation, visible lightultraviolet radiation, visible light, infrared radiation, radio wavesradio waves, infrared radiation, visible light, ultraviolet radiation

Light with a frequency of $7.30 \times 10^{14} \mathrm{~Hz}$ lies in the violet region of the visible spectrum. What is the wavelength of this frequency of light?$4.11 \times 10^{21} \mathrm{~nm}$$4.11 \times 10^{-7} \mathrm{~nm}$$4.11 \times 10^{-16} \mathrm{~nm}$411 nm

Question 4

1 pts

When an electron beam strikes a block of copper, x-rays of frequency $1.97 \times 10^{19} \mathrm{~Hz}$ are emitted. What is the wavelength of these x-rays?
$1.52 \times 10^{-11} \mathrm{~nm}$
$1.52 \times 10^{-2} \mathrm{pm}$
15.2 pm
15.2 nm

Question 5

Wavelength is...
one-half of the height of a wave.the distance between a peak of one wave and the trough of the next.
the distance between successive peaks in a wave.
the number of waves passing a fixed point in one second.

Question 6

Frequency is...

the number of waves passing a fixed point in one second.
one half the height of the wave.the distance between a peak in one wave to the trough in the next wave.the distance between successive peaks in a wave.

Question 7

It takes light with a wavelength of 212 nm to break the $\mathrm{N}-\mathrm{H}$ bond in ammonia. What energy is required per photon to break this bond? What is the $\mathrm{N}-\mathrm{H}$ bond strength in terms of kJ per mole?
$6.6 \times 10^{-22} \mathrm{~kJ} /$ photon; $0.398 \mathrm{~kJ} / \mathrm{mol}$
$6.6 \times 10^{-22} \mathrm{~kJ} /$ photon; $398 \mathrm{~kJ} / \mathrm{mol}$
$9.4 \times 10^{-22} \mathrm{~kJ} /$ photon; $565,000 \mathrm{~kJ} / \mathrm{mol}$
$9.4 \times 10^{-22} \mathrm{~kJ} /$ photon; $565 \mathrm{~kJ} / \mathrm{mol}$

In 1 sec, a 60 W bulb emits 11 J of energy in the form of infrared radiation (heat) of a corresponding wavelength of 1850 nm . How many photons of infrared radiation does the lamp generate in 1 sec ?
1.02×10^{20} photons
6.63×10^{23} photons
1.04×10^{29} photons
1.10×10^{-19} photons

Question 9

A photon has a frequency of 223 MHz . What is the energy of this photon?
$1.48 \times 10^{-25} \mathrm{~J}$
$1.48 \times 10^{-31} \mathrm{~J}$
$8.91 \times 10^{-22} \mathrm{~J}$
$8.91 \times 10^{-28} \mathrm{~J}$

Question 10

2 pts

Carbon emits photons at 745 nm when exposed to blackbody radiation. How much energy would be obtained if 44 g of carbon were irradiated? Assume each carbon atom emits one photon.
$9.1 \times 10^{5} \mathrm{~J}$
$7.1 \times 10^{6} \mathrm{~J}$
$5.9 \times 10^{5} \mathrm{~J}$
$2.7 \times 10^{-19} \mathrm{~J}$

Question 11

A 200 nm photon has \qquad times the energy of a 700 nm photon.4.20.293.50.37

Question 12

2 pts

If a photon's wavelength is $663 \mu \mathrm{~m}$, what is its energy?$4.40 \times 10^{-46} \mathrm{~J}$
$3.00 \times 10^{-22} \mathrm{~J}$
$3.00 \times 10^{-25} \mathrm{~J}$
$4.40 \times 10^{-43} \mathrm{~J}$

Question 13

Sodium vapor lamps, used for public lighting, emit yellow light of a wavelength of 570 nm .
How much energy is emitted by an excited sodium atom when it generates a photon?
$3.5 \times 10^{-19} \mathrm{~J}$
$2.8 \times 10^{-20} \mathrm{~J}$
$2.8 \times 10^{-19} \mathrm{~J}$
$3.5 \times 10^{-28} \mathrm{~J}$

Question 14

2 pts

Consider the sodium vapor lamps described in question 13. How much energy is emitted by 45.8 mg of sodium atoms emitting light at this wavelength? Assume each sodium atom emits one photon.
$2.0 \times 10^{-3} \mathrm{~J}$
$2.0 \times 10^{21} \mathrm{~J}$
$4.2 \times 10^{5} \mathrm{~J}$

420 J

Question 15

A particular metal has a work function of 1.05 eV . A light is shined onto this metal with a corresponding wavelength of 324 nm . What is the maximum velocity of the photoelectrons produced? (Hint: $1 \mathrm{eV}=1.6022 \times 10^{-19} \mathrm{~J}$, mass of an electron $=9.11 \times 10^{-}$ ${ }^{31} \mathrm{~kg}$)

No photoelectrons are produced.$1.35 \times 10^{12} \mathrm{~m} / \mathrm{s}$$9.89 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Question 16

A particular metal has a work function of 3.05 eV . A light is shined onto this metal with a corresponding wavelength of 524 nm . What is the maximum velocity of the photoelectrons produced? (Hint: $1 \mathrm{eV}=1.6022 \times 10^{-19} \mathrm{~J}$, mass of an electron $=9.11 \times 10^{-}$ ${ }^{31} \mathrm{~kg}$)

No photoelectrons are produced.
$8.72 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$9.12 \times 10^{5} \mathrm{~m} / \mathrm{s}$
$8.32 \times 10^{11} \mathrm{~m} / \mathrm{s}$

Question 17

Max Planck's theory averted the so called "UV Catastrophe" of classical mechanics. Which of the following best describes how Planck's theory avoided the "UV Catastrophe"?

Radiation emitted by blackbody radiators will reach UV energy levels only at extremely high temperatures.Eventually, blackbody radiators can cool to a temperature of absolute zero, resulting in its inability to release any more UV radiation.

Radiation given off by blackbody radiators can be emitted in all types of radiation, not just UV radiation.

Radiation given off by blackbody radiators can only be emitted in quantized amounts.

The de Broglie equation was important for a number of reasons, not least of which was that it demonstrated that \qquad .all objects have a wavelength. However, in the case of macroscopic objects, these wavelengths are so small that they can be ignored.only quantum objects have wavelengths.
all objects have a wavelength. However, in the case of quantum objects, these wavelengths are so small that they can be ignored.only macroscopic objects have wavelengths.

Question 19

An atom of which element, moving at $240 \mathrm{~m} / \mathrm{s}$, would possess a de Broglie wavelength of $1.40 \times 10^{-11} \mathrm{~m}$?

At

Sn

Cs

